Although the evidence for general toxic effects was not conclusive, on the basis of the new data and strengthened methods our scientists could not rule out a concern for genotoxicity and consequently they could not establish a safe level for daily intake of TiO2 as a food additive.
Titanium dioxide is the most widely used whitening pigment in the world and has been linked to adverse health effects, particularly genotoxicity and intestinal inflammation. It is applied as food coloring and a whitening agent to a wide variety of foods, including chewing gum, cakes, candies, breads and ice cream.
≥28.0
- Latest articles
-
- Titanium Dioxide (TiO2), a naturally occurring oxide of titanium, exists in two primary crystalline forms - Anatase and Rutile. Among these, Rutile TiO2, with its superior whiteness and high refractive index, has garnered significant attention in the coating sector. Its exceptional good whiteness imparts a brilliant, clean appearance to coatings, making it an indispensable ingredient in various applications such as architectural coatings, plastics, paper, and even food.
- Manufacturers of rutile titanium dioxide employ different processes to produce this versatile pigment. The two primary methods are the sulfate process and the chloride process. In the sulfate process, ilmenite ore is treated with sulfuric acid to form titanyl sulfate solution, which is subsequently processed into titanium dioxide. This method typically results in a more opaque and durable pigment that is preferred in applications where weatherability is crucial. On the other hand, the chloride process involves treating rutile ore with chlorine gas to produce titanium tetrachloride, which is then refined and oxidized to form titanium dioxide. This method often yields a higher purity product suitable for applications requiring greater brightness and color stability.
- no changes to DNA in various animal studies
- Ultimately, more research is needed to fully understand the potential risks of TiO2 in water supplies and to develop effective strategies for mitigating those risks. By staying informed and making informed choices, we can help ensure that TiO2 does not pose a threat to human health or the environment.
- In the vast world of industrial chemistry, the accurate determination of barium as titanium dioxide (TiO2) is of paramount importance. This process is crucial for maintaining product quality, ensuring safety standards, and complying with environmental regulations. In this article, we will delve into the various methods employed to determine barium in TiO2 and discuss their advantages and limitations.